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introduction

∙ Supercritical Carbon Dioxide (S-CO2) Power cycles can possess some favorable
qualities of both the Rankine and Brayton cycles.

∙ S-CO2 Power cycles are typically proposed as an alternative or compliment to
traditional Rankine and Brayton cycle engines.

∙ Because of their complexity, a S-CO2 engine has not yet been installed into production
use.

∙ Ongoing research and development aims to make such engines a reality. The present
work seeks to help those efforts and understand if these engines can provide an
advantage in combined cycle configurations.
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about supercritical co2 (s-co2) power cycles

∙ Closed loop configuration.
∙ Main compressor inlet temperature and pressure are at or near the critical point.
∙ Carbon dioxide is the proposed working fluid because it is cheap, inert, and has a
critical temperature of 304K (31◦C), which is near typical ambient temperatures of
∼ 294K (21◦C).

∙ High system pressures occur due to the high critical pressure of carbon dioxide
(7.4 MPa).
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carbon dioxide - cp vs temperature
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supercritical co2 power cycle - strengths

∙ Low Pressure Ratio
∙ Large amounts of recuperation possible.
∙ Low back work ratio: Decreased sensitivity of compressor/turbine efficiency on cycle
efficiency.

∙ High Power Density
∙ High pressure and high molecular weight.
∙ Fluid densities range from ∼23 kg/m3 to ∼788 kg/m3.

∙ High exergy efficiencies.
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supercritical co2 power cycle - weaknesses

∙ Nonlinear specific heat mismatch causes difficulties exchanging heat between high
and low pressure sides at lower temperatures.

∙ Heating power in recuperators can be 350% of the net output power and 180% of the
input heating power.

∙ Closed loop design presents additional system complexities.
∙ High pressures present increased structural loading and seal leakage issues.
∙ Nonlinear property variations near the critical point present turbomachinery design
complications as well as challenges maintaining off design operability.

∙ High working fluid densities prohibit efficient low power, low speed, low cost
prototypes to be developed.
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supercritical co2 heat exchanger
and cycle analysis
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layout for a stand alone cycle (with reheat)
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∙ Three compressors and several flow splits are used
to help mitigate heat transfer issues due to specific
heat mismatches.

∙ Four shafts are utilized to better match optimal
operating speeds of each turbomachinery
component.

∙ Due to the small size of the turbomachinery, as
well as the use of multiple shafts, each assembly
(except for the power turbine and generator) can
be placed inside a pressure vessel to avoid the
need for high speed, high pressure seals.

∙ Tanks and a blow down startup procedure are used
to eliminate the need to attach a motor to the
higher speed shafts.

Thermal Efficiency 49.6%
Exergy Efficiency 75.9%
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layout for a stand alone cycle (with reheat)
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heat exchanger mass flow differences
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variable property heat engine cycle analysis code

∙ A thermodynamic cycle analysis code was created from scratch using Python.
∙ Variable fluid properties are implemented as a function of both temperature and
pressure using REFPROP.

∙ 0-D counterflow heat exchanger model was developed to account for variable fluid
properties, yet maintaining high solution speed.

∙ Design space for the inputs is explored in parallel and can run on as many processors
as are available.
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0-d heat exchanger modeling

∙ Minimum temperature difference is defined instead of an effectiveness or surface area
and convection coefficients.

∙ Pressure drop is not computed based on an assumed geometry, but is approximated to
be linearly dependent upon temperature drop in the heat exchanger.

∙ Initial guess for the location of the minimum temperature difference and the
corresponding unknown boundaries is made by comparing heat capacities of each
fluid stream.

∙ A root finding technique is used with the initially guessed heat exchanger minimum
temperature difference and unknown boundaries in order to find the actual minimum
temperature difference and unknown boundaries.
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heat exchangers - temperature and specific heat variation
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cycle optimization constraints

Parameter Minimum Maximum
PreCompressor Pressure Ratio 1.0 4.0
Main Compressor Pressure Ratio 1.1 4.1
Recompression Fraction 0.000 0.991
Low Temperature Recuperator Main Fraction High Pressure Com-
ponent Mass Fraction

0.001 0.991

Main Compressor Outlet Pressure 2 MPa 35 MPa
Maximum Temperature 923 K [650◦C] 923 K [650◦C]
Minimum Temperature 306 K [33◦C] 306 K [33◦C]
Main Compressor Isentropic Efficiency 0.850 0.850
PreCompressor Isentropic Efficiency 0.875 0.875
ReCompressor Isentropic Efficiency 0.875 0.875
Power Turbine Isentropic Efficiency 0.930 0.930
Main/Re/Pre Compressor Turbine Isentropic Efficiency 0.890 0.890
Heat Exchanger Minimum Temperature Difference 5 K 5 K
Heat Exchanger Pressure Drop 500 Pa/K 500 Pa/K
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combined cycle engine cascades
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general topping cycle with optional fuel cell
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ηc = 84.0%

ηt = 90.0%

PRc = fixed at 37.15 (with fuel cell), optimized but limited to 45.00 (without fuel cell)

Turbine Inlet Temperature = 1,500 K [1,227◦C] (with fuel cell), 1,890K [1,617◦C] (without fuel cell)

Fuel Cell Excess Air = 26.3%

Fuel Cell Fuel Utilization = 80.0%

Fuel Cell Electrochemical Efficiency = 58.5% (HHV), 65.0% (LHV)
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intermediate and bottoming engines (no reheat)
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general combined cycle engine

Engine 1: Low/Medium Pressure Topping Cycle (Airbreathing Gas Turbine with Fuel Cell)

Engine 2:
High Pressure
Intermediate Cycle
(S-CO2 Engine)

Engine 3:
High Pressure
Intermediate Cycle
(S-CO2 Engine)

Engine 4:
High Pressure
Bottoming Cycle
(S-CO2 Engine)

H
o
t

E
x
h
a
u

st
W

a
rm

 E
x
h

a
u
st

G
a
se

s

Waste Heat

Waste Heat

AC Electricity

tank

C
ooler

H
igh Tem

perature
R

ecuperator

Low
 Tem

perature R
ecu

perator
Total M

ass F
raction

M
ediu

m
 Tem

perature R
e

cupera
tor

Low
 Tem

perature R
ecu

perator M
ain M

ass F
raction

C
ooler

C
ooler

G
enerator

tank

S
tarter

S
tarter

R
ecom

p
ression

 M
ass F

ractio
n

Main Mass Fraction

Total M
ass F

raction

M
ain

ReC

PreC

6

666

5
5

44
33

2

2
1

1

777 8

9

9

1
0

1
0

1
1

1
1

1
2

1
2 1
3

1
3

1
4

1
4

1
4

1
5

1
5

4

7

Pow
er

Waste Heat

Waste Heat

AC Electricity

tank

C
ooler

H
igh Tem

perature
R

ecuperator

Low
 Tem

perature R
ecu

perator
Total M

ass F
raction

M
ediu

m
 Tem

perature R
e

cupera
tor

Low
 Tem

perature R
ecu

perator M
ain M

ass F
raction

C
ooler

C
ooler

G
enerator

tank

S
tarter

S
tarter

R
ecom

p
ression

 M
ass F

ractio
n

Main Mass Fraction

Total M
ass F

raction

M
ain

ReC

PreC

6

666

5
5

44
33

2

2
1

1

777 8

9

9

1
0

1
0

1
1

1
1

1
2

1
2 1
3

1
3

1
4

1
4

1
4

1
5

1
5

4

7

Pow
er

Waste Heat

Waste Heat

AC Electricity

tank

C
ooler

H
igh Tem

perature
R

ecuperator

Low
 Tem

perature R
ecu

perator
Total M

ass F
raction

M
ediu

m
 Tem

perature R
e

cupera
tor

Low
 Tem

perature R
ecu

perator M
ain M

ass F
raction

C
ooler

C
ooler

G
enerator

tank

S
tarter

S
tarter

R
ecom

p
ression

 M
ass F

ractio
n

Main Mass Fraction

Total M
ass F

raction

M
ain

ReC

PreC

6

666

5
5

44
33

2

2
1

1

777 8

9

9

1
0

1
0

1
1

1
1

1
2

1
2 1
3

1
3

1
4

1
4

1
4

1
5

1
5

4

7

Pow
er

GeneratorCool Intake Air

CH4

AC Electricity

O2

Pressurized Methane (CH4) Fuel

N2

O2

N2

CO2

Electrolyte

Anode

CathodeHeat Generation

Heat Generation

Heat Generation

DC Electricity

H2O

H2O
CO2

Combustor

Solid Oxide Fuel Cell

19



combined cycle engine
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Air cycle entropy reference is arbitrary and does not follow the same conventions as CO2.

Combined Cycle Efficiency: 64.95%
Line widths scaled by mass fraction.

Air cycle entropy reference is arbitrary and does not follow the same conventions as CO2.

Engine Work
Fraction

Marginal
Combined Cycle Efficiency

Engine
Efficiency

Engine
Exergy

Efficiency
Type Number % % % %

Gas Turbine 1 70.05 45.49 45.49 54.28
S − CO2 Engine 2 18.60 12.08 49.59 75.02
S − CO2 Engine 3 9.45 6.14 33.53 63.79
S − CO2 Engine 4 1.90 1.23 14.14 46.10

Combined 100.00 64.95 64.95 77.5
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engine number 2: s− co2 cycle, temperature entropy diagram
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engine number 3: s− co2 cycle, temperature entropy diagram
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engine number 4: s− co2 cycle, temperature entropy diagram
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efficiency vs s− co2 engine peak pressure & topping cycle turbine inlet temp
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efficiency vs number of engines & topping cycle comp isentropic efficiency
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combined cycle engine with fuel cell
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Combined Cycle Efficiency: 65.84% (HHV),   73.09% (LHV)
Line widths scaled by mass fraction.

Air cycle entropy reference is arbitrary and does not follow the same conventions as CO2.

Engine Work Fraction Marginal
Combined Cycle Efficiency Engine Efficiency

Engine
Exergy

Efficiency
Type Number % HHV, % LHV, % % %

Fuel Cell 1 71.14 91.15 46.84 60.01 52.00 66.63 52.00 (LHV) 66.63 (LHV) -Gas Turbine 20.01 13.17 14.63 30.47 (LHV)
S − CO2 Engine 2 6.44 4.24 4.71 41.00 69.99
S − CO2 Engine 3 2.41 1.59 1.76 23.02 55.52

Combined 100.00 65.84 73.09% -
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novelty of the current work

∙ Combined cycle configurations using supercritical carbon dioxide power cycles in
conjunction with a fuel cell and gas turbine has been explored and optimized.

∙ A unique shaft layout and startup procedure are used in conjunction with a series of
intermediate and bottoming engines.

∙ With the multi-shaft configuration, turbomachinery can be placed inside pressure
vessels to avoid high pressure ratio seals.

∙ A custom variable property cycle analysis code was developed and used.
∙ A combined cycle efficiency of 64.95% was predicted for the combined cycle without a
fuel cell with a turbine inlet temperature of 1,890 K [1,617◦C] and a rejected heat
temperature of 306 K [33◦C].

∙ A combined cycle efficiency of 73.09% was predicted for the combined cycle with a fuel
cell with a rejected heat temperature of 306 K [33◦C].
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conclusions

∙ Supercritical CO2 Power Cycles have the potential for high efficiencies at low turbine
inlet temperatures.

∙ Highly nonlinear fluid properties present significant challenges in cycle and
component design.

∙ Appropriate modeling of heat exchangers is critical in assessing correct cycle
performance.

∙ Supercritical carbon dioxide power cycles can be very beneficial in combined cycle
configurations, provided multiple supercritical carbon dioxide power cycles are used
and each cycle is optimized individually.
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recommended future work

∙ Allow for variable turbomachinery efficiencies which are dependent on the inlet
conditions and pressure ratio.

∙ Improve pressure drop relationships for heat exchangers in the 0-D heat exchanger
solver.

∙ Support condensation and boiling in heat exchangers.
∙ Further investigate the use of CoolProp as a replacement for REFPROP.
∙ Incorporate a cost model into the cycle optimization process.
∙ Conduct preliminary design and numerical simulations of turbomachinery
components.
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Questions?
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selected temperatures: combined cycle

Engine Exhaust Gas Heat Exchanger Power Turbine Main Compressor

Type Number Inlet Temperature Outlet Temperature Exit Temperature Exit Temperature
K [◦C] K [◦C] K [◦C] K [◦C]

Gas Turbine 1 - 903 [630] 903 [630] 925 [652]
S− CO2 Engine 2 903 [630] 645 [372] 698 [425] 348 [75]
S− CO2 Engine 3 645 [372] 441 [168] 494 [221] 329 [56]
S− CO2 Engine 4 441 [168] 342 [69] 348 [75] 313 [40]
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selected temperatures: combined cycle with fuel cell

Engine Exhaust Gas Heat Exchanger Power Turbine Main Compressor

Type Number Inlet Temperature Outlet Temperature Exit Temperature Exit Temperature
K [◦C] K [◦C] K [◦C] K [◦C]

Fuel Cell +
Gas Turbine 1 - 739 [466] 739 [466] 923 [650]

S− CO2 Engine 2 739 [466] 523 [250] 563 [289] 346 [73]
S− CO2 Engine 3 523 [250] 373 [99] 385 [111] 334 [61]
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